High Ash Coal Gasification: CSIR-CIMFR's Achievement

Sujan Saha
PP&II and Gasification & Catalysis Research Group
CSIR-Central Institute of Mining and Fuel Research, Dhanbad

Road Show
Scheme of Financial Support to Surface Coal Gasification Projects
by
Ministry of Coal, Gol
February 16, 2024
Hyderabad

INDIAN COAL SCENARIO

Estimated coal reserve in India is 361.41 BT (up to 1200 m)

Indian non-coking coal inventory:185 BT (up to 300 m)

❖Superior Grade non-coking coal: 11.73 % (G1 – G6, A + M : up to 29%)

❖Inferior Grade non-coking coal: 84.64 % (G7-G17)

COAL & LIGNITE RESERVES IN INDIA

	Proved, BT	Indicated, BT	Inferred, BT	Total, BT
Coal	187.11 (52%)	147.25 (41%)	27.05 (7%)	361.41
Lignite	7.37 (16%)	25.72 (56%)	13.11 (28%)	46.20

COAL FIELD WISE COAL RESERVES

	Reserves Proved, BT	Coal with A+M <24%	Coal with A+M 24 - 34%	Coal with A+M >34%
ECL	22.4	11%	39%	50%
MCL	40.9	1%	5%	94%
CCL	16.8	4%	25%	71%
SECL	27.2	7%	19%	74 %
WCL	9.4	5%	48%	47%

Non coking coal (A+M: 29–34 %): 17.45% (G7 – G8) Non-coking coal (A+M: 34-55 %): 81.39% (G9 – G14) Non-coking coal (A+M > 55 %): 1.16% (G15 – G17)

❖Ungraded non-coking coal: 3.63%

Source: MoC, Annual Report 2022-23

CSIR-CIMFR: Role in Indian Coal Gasification

- ❖Member of NITI Aayog Technical Committee on Surface Col Gasification (Notification Date: 19/10/2016)
- ❖CSIR-CIMFR jointly with CMPDI was entrusted to carry out detailed analysis of the coal from potential operational mines/blocks with respect to Surface Coal Gasification (Notification Date: 17/05/2018)
- ❖ Member of Technical Expert Committee for Talcher Fertilizer Limited (TFL): (Notification Date: 14/06/2018).
- ❖ Member of Technical Standing Group for Indian Coal Gasification Mission (Notification Date: 8/05/2020)
- ❖Nodal institution for Resource Group for Gasification (Ministry of Coal) (Notification Date: 3/07/2020)

GASIFICATION POTENTIAL EVALUATION & UTILIZATION STRATEGY

CSIR-CIMFR introduced coal characterization matrix considering its detailed physico-chemical properties

Benefits:

- Suitability of the feedstock matching with the gasifier
- Feed-specific Operational Philosophy
- Judicious utilization of Indian Coal Resource

Field implementation:

Completed Gasification potential evaluation of MCL, ECL and CCL subsidiaries and report submitted to NITI Aayog.

Targeted Coal (WCL, SECL, SCCL), Lignite and Biomass resource

CSIR-CIMFR DEVELOPMENT OF 0.5 TPD AIR BLOWN PFBG FACILITY

AIR BLOWN PFBG ACHIEVEMENTS

- ❖ Addressed operational issues: fuel feeding, ash agglomerates extraction
- Established operational philosophy for gasification in PFBG.
- Gasification performance of high ash coals, biomasses & blends.
- ❖ Patent No. 407551

- Electrically heated alloy reactor (TRL-5)
- ❖ Installed in 2008-09
- ❖ Fuel Feed Rate : up to 20 kg/h
- **❖** Temperature: up to 1000 °C
- ❖ Pressure : up to 3 kg/cm²

❖ Syngas Composition:

CO: 15-22, H₂: 15-20, CH₄: 1-2, CO₂: 10-12

❖ Heat Value: 1000-1200 kcal/Nm³

❖ Carbon Conversion: up to 93%

❖ Yield: 2.2-2.5 Nm³/kg of fuel

CSIR –CIMFR DEVELOPMENT OF 1.5 TPD OXY-BLOWN PFBG FACILITY

- ❖ CSIR-CIMFR design, Refractory Lined Gasifier
- ❖ Fuel Feed Rate : up to 1.5 TPD
- Gasifying Agents: Air/Oxygen & Steam
- ❖ Temperature: up to 1050 °c, Pressure : up to 10 kg/cm²
- Facility dedicated to the nation on 17/11/2020

ACHIEVEMENTS:

- Oxy-blown Gasification of MCL (Ash 36% & 42%), CCL (Ash 36%) with 92% Oxygen & Steam.
- Cumulative operation: >500 hrs.
- ❖ Syngas Comp. Vol.%: CO: 25, H₂: 30, CH₄: 3.5, CO₂: 30,
- Carbon Conversion: >95%,
- ❖ Syngas Yield: 1.43-1.68 Nm³/kg fuel
- ❖ Patent Appl. No. 202211006577, Filing: 07/02/2022

Flow Diagram of 250 kg/day Syngas to Methanol Process AT CSIR-CIMFR

SYNGAS TO METHANOL BENCH SCALE REACTOR ACTIVITIES

- Conducted Syngas to Methanol conversion experiments in 100 ml Bench Scale Reactor
- > Used Cu-Zn-Al based commercial catalyst
- > Maintained syngas composition expected at the exit of WGS & CO₂ scrubber

Syngas
Composition at
Gasifier Outlet

CO: 27-30% H₂: 27-30% CO₂: 20-25% CH₄: 1.5-2% Syngas Composition at WGS Outlet

CO: 15-25% H₂: 35-50% CO₂: 25-35% CH₄: 1-2% Syngas
Composition at
CO₂ Scrubber
Outlet

CO: 25-35% H₂: 50-60% CO₂: 5-6%

CH₄: 2-3%

Syngas Composition					
H_2	CO	CO ₂	CH ₄		
58	32	5.0	5.0		

> Temperature: 200 -240 °C

➤ Pressure: 40 – 70 kg/cm²

BENCH SCALE SYNGAS TO METHANOL REACTOR

DEMO SCALE PFBG PLANT DEVELOPMENT AT STRATEGIC LOCATION

☐ Development of demo plat should be executed with a joint venture between R&D institutions, Engineering Houses,
and Industries
□ R&D Institution: CSIR institutions, IITs
□ Engineering Houses: EIL R&D, Gurgaon; L&T, Mumbai; BHEL R&D, Tata R&D
□ Industries: Coal producers, Fertilizer Sector, Steel Sector, Tiles/Refractory brick manufacturers, coal-based chemical and liquid/gaseous fuel producers, etc.
☐ All individual stakeholders have specific strengths at different levels of technology development and implementation
☐ Independent parallel program may not be effective.
Strategic Location
Strategic Location ☐ Before going to commercial venture, demonstration plant (dedicated and retrofitted) may need significant modifications with respect to structure, components etc.
☐ Before going to commercial venture, demonstration plant (dedicated and retrofitted) may need significant
☐ Before going to commercial venture, demonstration plant (dedicated and retrofitted) may need significant modifications with respect to structure, components etc.
 Before going to commercial venture, demonstration plant (dedicated and retrofitted) may need significant modifications with respect to structure, components etc. Dedicated Demo plant location should be near to chemical industrial hub well linked to utility sectors. Availability of engineering components; chemical, electronic, electrical parts & IT components; skilled

CSIR ACTIVITIES FOR THE DEVELOPMENT OF DEMO SCALE PFBG PLANT

☐ Presentations are made before different Ministries to highlight the Oxy-blown PFBG Pilot Plant development & achievements related to the high ash coal/biomass gasification.
□ Detailed discussions were held in the first meeting under the chairmanship of DG, CSIR on September 21, 2021 & subsequent meetings, for a joint venture with BHEL, for the development and commissioning of a Demo Scale Gasification Plant.
☐ Meeting held at NITI Aayog on October 13, 2021 for developing DPR for 300 TPD high ash coal gasification-based methanol production plant (Stakeholders- BHEL, RIL, CSIR, BHEL, Thermax, and IIT-D participated)
□ Review meetings on the ongoing Coal to Methanol (CoSynol) Program of CSIR-CIMFR under the CSIR Mission Directorate held under the chairmanship of Dr. V. K. Saraswat, Member (Science), NITI Aayog on November 17, 2021, June 7, 2022, December 8, 2022 & August 28, 2023
□ Recently, Coal India signed MOU with BHEL for the implementation of the BHEL gasification technology for the Coal to Ammonium Nitrate project.
It is the right time for R&D institutions, Engineering Houses, and Industries to join hands.

Way Forward: Role of CSIR-CIMFR

- **♦ Selection of matching Gasification Technology** using CSIR-CIMFR developed Coal Characterization Matrix and Selection Protocol
- **❖ Adoption of the Commercially Proven Gasification Technology (EFG and MBG)**
 - ☐ Pre-processing of the feedstock to make it suitable for selected gasifier
 - □ Downstream processing of syngas for specific end application
 - ☐ Establishing feed-specific operational philosophy
 - □ Techno-economic feasibility analysis
- Indigenous PFBG development for high-ash Indian coal
 - Knowledge Partner to develop Demo-scale (100/300/500 TPD) PFBG at a strategic location
 - Establishing operational philosophy to gasify high ash coal
 - □ Techno-economic feasibility analysis of PFBG in comparison to EFG and MBG

director@cimfr.nic.in

